Identification of the blood-borne somatotroph-differentiating factor during chicken embryonic development.
نویسندگان
چکیده
Somatotrophs become a significant population by day 16 of chicken embryonic development. We have previously demonstrated that an earlier induction of GH cell differentiation is possible with the addition of day 16 embryonic serum to cultures of day 12 pituitary cells, an age when somatotrophs are rare. The present study was designed to identify the blood-borne signal(s) responsible for the serum activity, using reverse hemolytic plaque assays to identify individual GH-secreting cells. The activity was found to be a heat-stable, ether-soluble compound(s) that is bound or inhibited by a trypsin-sensitive protein. The extent of GH cell differentiation was greater (P < 0.05; n = 3) in response to the ether phases of heated day 16 (14.1 +/- 0.4% of all cells) and day 12 sera (9.3 +/- 0.4%) than with untreated serum from days 16 and 12 (6.1 +/- 0.4% and 0.82 +/- 0.4%, respectively). Furthermore, ether-extracted day 16 serum was more effective than ether-extracted day 12 serum, which was also different from basal (0.85 +/- 0.4%; P < 0.05). Based on this biochemical profile, the abilities of various steroids to stimulate differentiation were tested. Three steroids were found to stimulate somatotroph differentiation in vitro: 17beta-estradiol, corticosterone, and progesterone. However, the estradiol receptor antagonist, tamoxifen, while abolishing the effect of estradiol, had no effect on the induction of differentiation by day 16 serum. In contrast, RU486, a specific glucocorticoid receptor antagonist in chickens, blocked the stimulatory effects of corticosterone, progesterone, and day 16 serum on somatotroph differentiation. We next tested whether the active compound in day 16 embryonic serum was corticosterone, the predominant glucocorticoid in chickens. Incubation of day 16 serum with corticosterone antiserum, but not control antiserum, suppressed day 16 serum-induced GH cell differentiation. Therefore, we conclude that corticosterone is the blood-borne signal capable of stimulating somatotroph differentiation in vitro. The present findings together with previous reports indicate that somatotroph differentiation during embryonic development may result from an increase in circulating glucocorticoid concentrations.
منابع مشابه
Endogenous thyroid hormones modulate pituitary somatotroph differentiation during chicken embryonic development.
Growth hormone cell differentiation normally occurs between day 14 and day 16 of chicken embryonic development. We reported previously that corticosterone (CORT) could induce somatotroph differentiation in vitro and in vivo and that thyroid hormones could act in combination with CORT to further augment the abundance of somatotrophs in vitro. The objective of the present study was to test our hy...
متن کاملEvidence that lactotrophs do not differentiate directly from somatotrophs during chick embryonic development.
It is generally accepted that, in mammals, lactotrophs differentiate from somatotrophs through an intermediate cell type, the mammosomatotroph. However, little information exists about mammosomatotrophs and their relationship with lactotroph development in non-mammalian vertebrates. We reported previously that corticosterone (CORT) can induce both somatotroph and lactotroph differentiation in c...
متن کاملOpposing functions of the Ets factors NERF and ELF-1 during chicken blood vessel development.
OBJECTIVE The purpose of this study was to evaluate the role of the Ets factor NERF in the regulation of the Tie1 and Tie2 genes during chicken blood vessel development. METHODS AND RESULTS We have isolated the full-length cDNA for the chicken homologue of the human Ets factor NERF2 (cNERF2). Northern blot analysis and in situ hybridization demonstrate that cNERF2 is enriched in the developin...
متن کاملVasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies.
Embryonic stem cells (ESC) have been established previously from the inner cell mass cells of mouse blastocysts. In suspension culture, they spontaneously differentiate to blood-island-containing cystic embryoid bodies (CEB). The development of blood vessels from in situ differentiating endothelial cells of blood islands, a process which we call vasculogenesis, was induced by injecting ESC into...
متن کاملchHDAC11 mRNA Expression During Prenatal and Postnatal Chicken (Gallus gallus) Brain Development
Background: Histone deacetylation plays an essential role in transcriptional regulation of cell cycle progression and other evolutionary processes. Several results confirm the importance of the latest found HDAC11 gene to deacetylate histone core in neurons and their supportive cells in developing the vertebrate Central Nervous System (CNS). Objectives: This study investigates the HDAC11 pote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology
دوره 138 11 شماره
صفحات -
تاریخ انتشار 1997